Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD780701Y, 780702Y

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD780701Y and 780702Y are the μ PD780701Y Subseries products of the 78K/0 Series. These microcontrollers have DCAN controller (μ PD780701Y), IEBusTM controller (μ PD780702Y), A/D converter, timer, serial interface, interrupt control, and various other peripheral hardware.

The μ PD78F0701Y which can operate in the same power supply voltage as the mask ROM version, and various development tools are under development.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

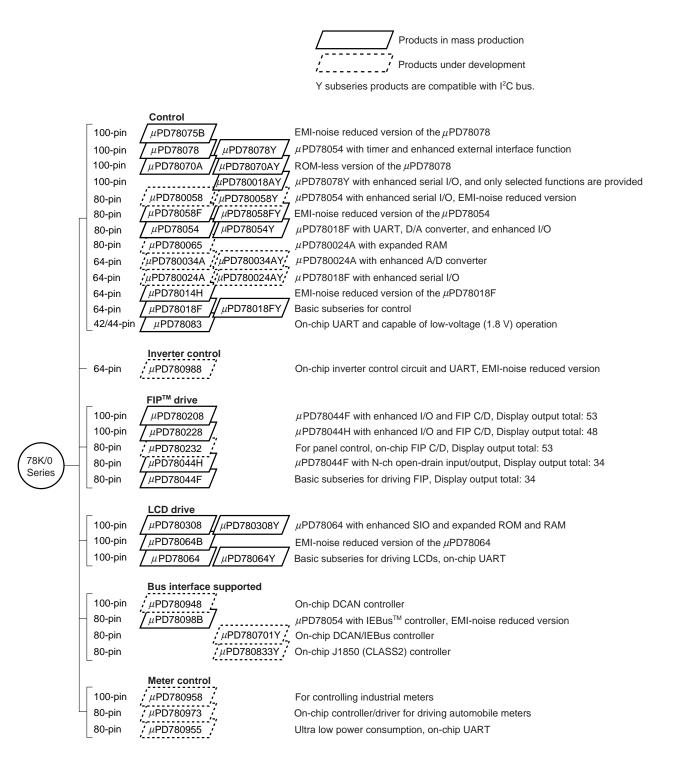
μPD780701Y Subseries User's Manual: U13781E 78K/0 Series User's Manual Instructions: U12326E

FEATURES

- DCAN (Direct Storage Controller Area Network) controller (incorporated in μPD780701Y)
- IEBus (Inter Equipment Bus[™]) controller (incorporated in μPD780702Y)
- Internal ROM: 60 Kbytes
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 2048 bytes
- Buffer RAM for DCAN: 288 bytes (μPD780701Y only)
- Minimum instruction execution time can be changed from high-speed (0.32 μ s) to low-speed (5.09 μ s)
- I/O ports: 67
- 8-bit resolution A/D converter: 16 channels
- Serial interface: 4 channels
- Timer: 7 channels
- Power supply voltage: VDD = 3.5 to 5.5 V

APPLICATIONS

Car audio systems, etc.

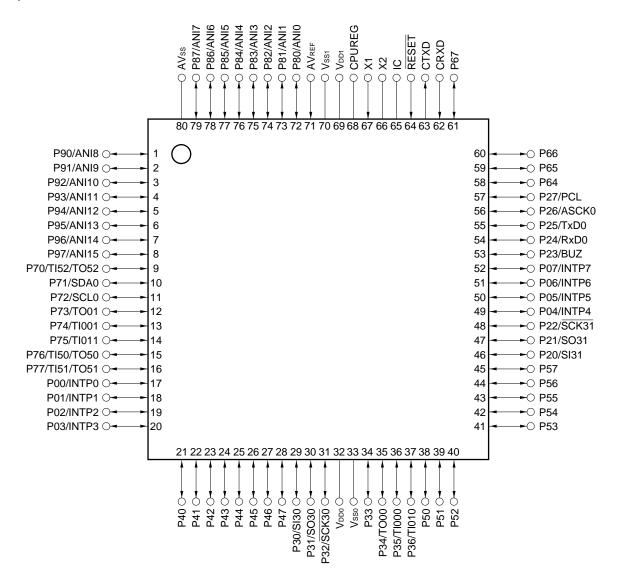

ORDERING INFORMATION

Part Number	Package
μPD780701YGC-×××-8BT	80-pin plastic QFP (14 $ imes$ 14 mm)
μPD780702YGC-xxx-8BT	80-pin plastic QFP (14 $ imes$ 14 mm)

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

78K/0 SERIES LINEUP

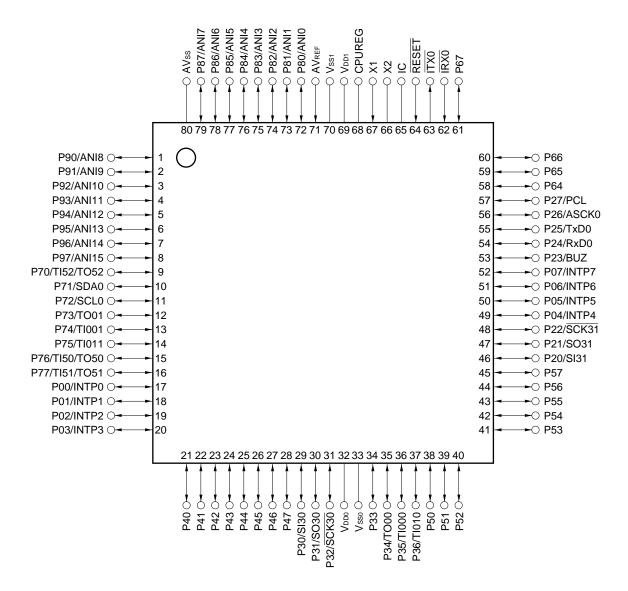
The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.



OVERVIEW OF FUNCTIONS

Part Number		μPD780701Y	μPD780702Y	
Item				
	ROM	60 Kbytes		
memory	High-speed RAM	1024 bytes		
	Expansion RAM	2048 bytes		
	Buffer RAM for DCAN	288 bytes	None	
Minimum instructi	on execution time	 On-chip minimum instruction execution time 0.32 μs/0.64 μs/1.27 μs/2.54 μs/5.09 μs 		
General-purpose	registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4	banks)	
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 Bit manipulation (set, reset, test, Boolear BCD adjust, etc. 		
I/O ports		Total: 67 • CMOS I/O: 56 • TTL input/CMOS output: 8 • N-ch open-drain I/O: 3		
A/D converter		 8-bit resolution × 16 channels Power fail detection function 		
Serial interface		 3-wire serial I/O mode: 2 channels UART mode: 1 channel I²C bus mode: 1 channel 		
Timer		 16-bit timer/event counter: 2 channels 8-bit timer/event counter: 3 channels Watch timer: 1 channel Watchdog timer: 1 channel 		
Timer output		5 (8-bit PWM output capable: 3)		
Clock output		49.2 kHz, 98.3 kHz, 197 kHz, 393 kHz, 786 kHz, 1.57 MHz, 3.15 MHz, 6.29 MHz (@ 6.29-MHz operation with system clock)		
Buzzer output		0.768 kHz, 1.54 kHz, 3.07 kHz, 6.14 kHz (@	6.29-MHz operation with system clock)	
Bus controller		DCAN controller	IEBus controller	
Vectored interrupt Maskable		Internal: 20, External: 8 Internal: 19, External: 8		
sources	Non-maskable	Internal: 1		
	Software	1		
Power supply volt	age	V _{DD} = 3.5 to 5.5 V		
Operating ambien	t temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		
Package		80-pin plastic QFP (14 \times 14 mm)		

PIN CONFIGURATION (Top View)


- (1) μPD780701Y
 - 80-pin plastic QFP (14 × 14 mm) μPD780701YGC-xxx-8BT

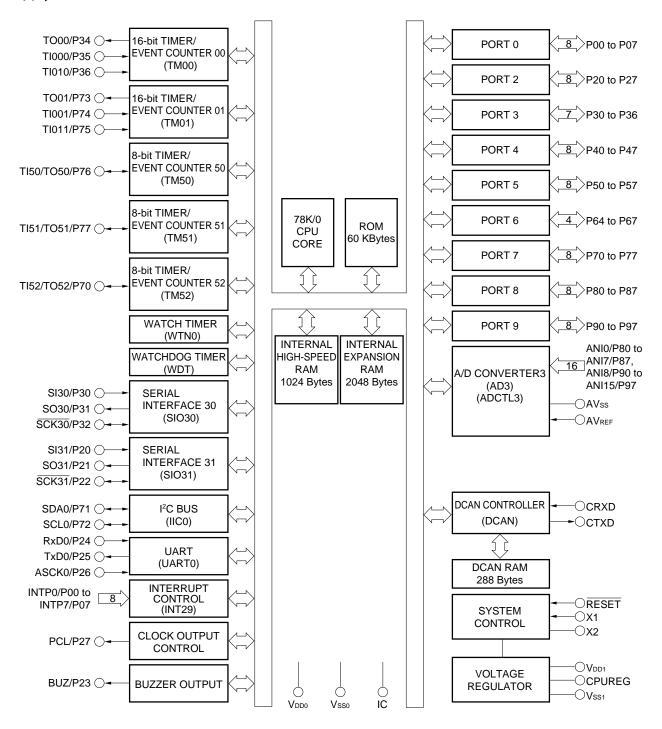
Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vss1.

- 2. Connect the AVss pin to Vsso.
- 3. Connect the AVREF pin to VDD0.
- **Remark** When the μPD780701Y and 780702Y are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

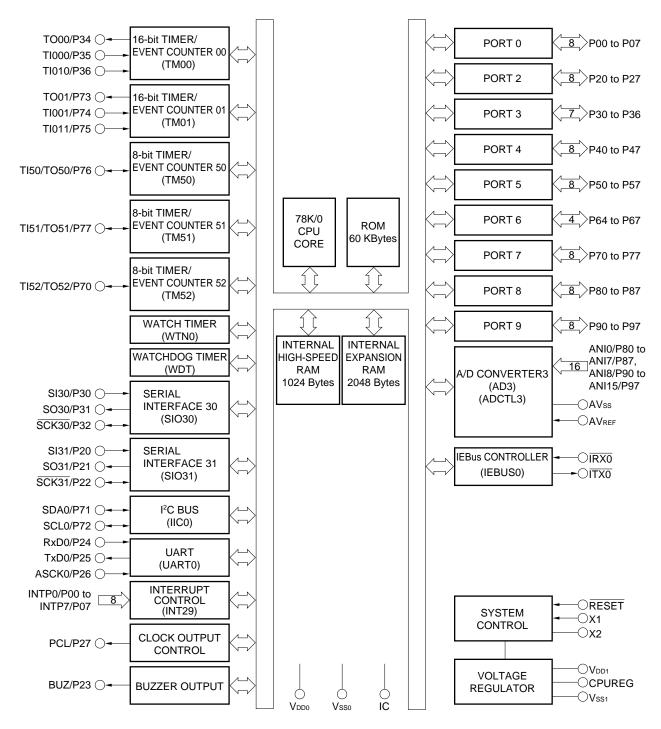
- (2) μPD780702Y
 - 80-pin plastic QFP (14 × 14 mm) μPD780702YGC-xxx-8BT

Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vss1.

- 2. Connect the AVss pin to Vsso.
- 3. Connect the AVREF pin to VDD0.
- **Remark** When the μ PD780701Y and 780702Y are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.


NEC

μPD780701Y, 780702Y


ANI0 to ANI15:	Analog Input	P80 to P87:	Port 8
ASCK0:	Asynchronous Serial Clock	P90 to P97:	Port 9
AVREF:	Analog Reference Voltage	PCL:	Programmable Clock
AVss:	Analog Ground	RESET:	Reset
BUZ:	Buzzer Output	RxD0:	Receive Data (for UART0)
CPUREG:	Regulator for CPU Power Supply	SCK30, SCK31:	Serial Clock (for SIO30, 31)
CRXD:	CAN Receive Data	SCL0:	Serial Clock (for IIC0)
CTXD:	CAN Transmit Data	SDA0:	Serial Data
IC:	Internally Connected	SI30, SI31:	Serial Input
INTP0 to INTP7:	Interrupt for Peripherals	SO30, SO31:	Serial Output
IRX0:	IEBus Receive Data	TI000, TI010, TI001	,
ITX0:	IEBus Transmit Data	TI011, TI50, TI51,	
P00 to P07:	Port 0	TI52:	Timer Input
P20 to P27:	Port 2	TO00, TO01, TO50	3
P30 to P36:	Port 3	TO51, TO52:	Timer Output
P40 to P47:	Port 4	TxD0:	Transmit Data (for UART0)
P50 to P57:	Port 5	Vdd0, Vdd1:	Power Supply
P64 to P67:	Port 6	Vsso, Vss1:	Ground
P70 to P77:	Port 7	X1, X2:	Crystal

BLOCK DIAGRAM

(1) μPD780701Y

(2) μPD780702Y

CONTENTS

1.	DIFFERENCES BETWEEN μ PD780701Y AND μ PD780702Y	. 10
2.	PIN FUNCTIONS	. 11
	2.1 Port Pins	11
	2.2 Non-port Pins	13
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	15
3.	MEMORY SPACE	. 17
4.	PERIPHERAL HARDWARE FUNCTION FEATURES	. 18
	4.1 Ports	18
	4.2 Clock Generator	19
	4.3 Timer/Counter	
	4.4 Clock Output/Buzzer Output Control Circuit	26
	4.5 A/D Converter	27
	4.6 Serial Interfaces	28
	4.7 DCAN Controller (μPD780701Y only)	
	4.8 IEBus Controller (μPD780702Y only)	33
5.	INTERRUPT FUNCTIONS	. 36
6.	STANDBY FUNCTION	. 40
7.	RESET FUNCTION	. 40
8.	INSTRUCTION SET	. 41
9.	ELECTRICAL SPECIFICATIONS	. 44
10.	PACKAGE DRAWING	. 57
API	PENDIX A. DEVELOPMENT TOOLS	. 58
API	PENDIX B. RELATED DOCUMENTS	. 60

1. DIFFERENCES BETWEEN μ PD780701Y AND μ PD780702Y

The essential difference between these two products is the on-chip bus controller. The main differences between the μ PD780701Y and μ PD780702Y are outlined in Table 1-1.

Table 1-1. Differences between μ PD780701Y and μ PD780702Y

Part Number	μPD780701Y	μPD780702Y	
Item			
On-chip bus controller	DCAN controller	IEBus controller	
Buffer RAM for DCAN	288 bytes	None	
RX Pin (Pin No.62)	CRXD	ĪRXO	
TX Pin (Pin No.63)	СТХD	ΙΤΧΟ	
Internal maskable interrupt	Total: 20 sources (3 sources via the DCAN controller)	Total: 19 sources (2 sources via the IEBus controller)	

2. PIN FUNCTIONS

2.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00 to P07	Input/output	Port 0. 8-bit input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.		Input	INTP0 to INTP7
P20	Input/output	Port 2.	Port 2.		SI31
P21		8-bit input/output port.	oifiad in 1 hit unita. An an ahin null un		SO31
P22		resistor can be specified	cified in 1-bit units. An on-chip pull-up		SCK31
P23					BUZ
P24					RxD0
P25					TxD0
P26					ASCK0
P27					PCL
P30	Input/output	Port 3.	An on-chip pull-up resistor can be	Input	SI30
P31		7-bit input/output port. specified by means of software.	specified by means of software.		SO30
P32		Input/output can be specified in 1-bit units.			SCK30
P33			N-ch open-drain input/output port (15-V withstand voltage). LEDs can be driven directly.		_
P34			An on-chip pull-up resistor can be specified by means of software.		ТО00
P35					TI000
P36					TI010
P40 to P47	Input/output	Port 4. 8-bit input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software. Interrupt request flag KRIF is set to 1 by falling edge detection.		Input	_
P50 to P57	Input/output	Port 5. 8-bit input/output port. TTL level input/CMOS output. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.		Input	-
P60 to P67	Input/output	Port 6. 4-bit input/output port. Input/output can be spe An on-chip pull-up resist software.	cified in 1-bit units. tor can be specified by means of	Input	_

2.1 Port Pins (2/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P70	Input/output	Port 7. 8-bit input/output port.	An on-chip pull-up resistor can be specified by means of software.	Input	TI52/TO52
P71		Input/output can be specified in 1-bit units.	N-ch open-drain input/output port		SDA0
P72			(5-V withstand voltage).		SCL0
P73			An on-chip pull-up resistor can be specified by means of software.		TO01
P74					TI001
P75					TI011
P76					TI50/TO50
P77					TI51/TO51
P80 to P87	Input/output	Port 8. 8-bit input/output port. Input/output can be specified in 1-bit units.		Input	ANI0 to ANI7
P90 to P97	Input/output	Port 9. 8-bit input/output port. Input/output can be specified in 1-bit units.		Input	ANI8 to ANI15

2.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 to INTP7	Input	External interrupt input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input	P00 to P07
SI30	Input	Serial interface serial data input	Input	P30
SI31				P20
SO30	Output	Serial interface serial data output	Input	P31
SO31				P21
SDA0	I/O	Serial interface serial data input/output	Input	P71
SCK30	I/O	Serial interface serial clock input/output	Input	P32
SCK31				P22
SCL0				P72
RxD0	Input	Serial data input for asynchronous serial interface	Input	P24
TxD0	Output	Serial data output for asynchronous serial interface	Input	P25
ASCK0	Input	Serial clock input for asynchronous serial interface	Input	P26
CRXD ^{Note 1}	Input	Data input of DCAN controller (DCAN)	Input	_
CTXD ^{Note 1}	Output	Data output of DCAN controller (DCAN)	Output	-
IRX0 ^{Note 2}	Input	Data input of IEBus controller (IEBUS0)	Input	-
ITX0 ^{Note 2}	Output	Data output of IEBus controller (IEBUS0)	Output	_
TI000	Input	External count clock input to 16-bit timer (TM00)	Input	P35
TI010		External count clock input to 16-bit timer (TM00)		P36
TI001		External count clock input to 16-bit timer (TM01)		P74
TI011		External count clock input to 16-bit timer (TM01)		P75
TI50		External count clock input to 8-bit timer (TM50)		P76/TO50
TI51		External count clock input to 8-bit timer (TM51)		P77/TO51
TI52		External count clock input to 8-bit timer (TM52)		P70/TO52
TO00	Output	16-bit timer (TM00) output	Input	P34
TO01		16-bit timer (TM01) output		P73
TO50		8-bit timer (TM50) output		P76/TI50
TO51		8-bit timer (TM51) output		P77/TI51
TO52		8-bit timer (TM52) output		P70/TI52
PCL	Output	Clock output	Input	P27
BUZ	Output	Buzzer output	Input	P23
ANI0 to ANI7	Input	A/D converter (AD3) analog input	Input	P80 to P87
ANI8 to ANI15				P90 to P97
AVREF	Input	A/D converter (AD3) reference voltage and analog power supply	_	
AVss	_	A/D converter (AD3) ground potential	_	_
X1	Input	Connecting crystal resonator for system clock oscillation		
X2	_		_	_

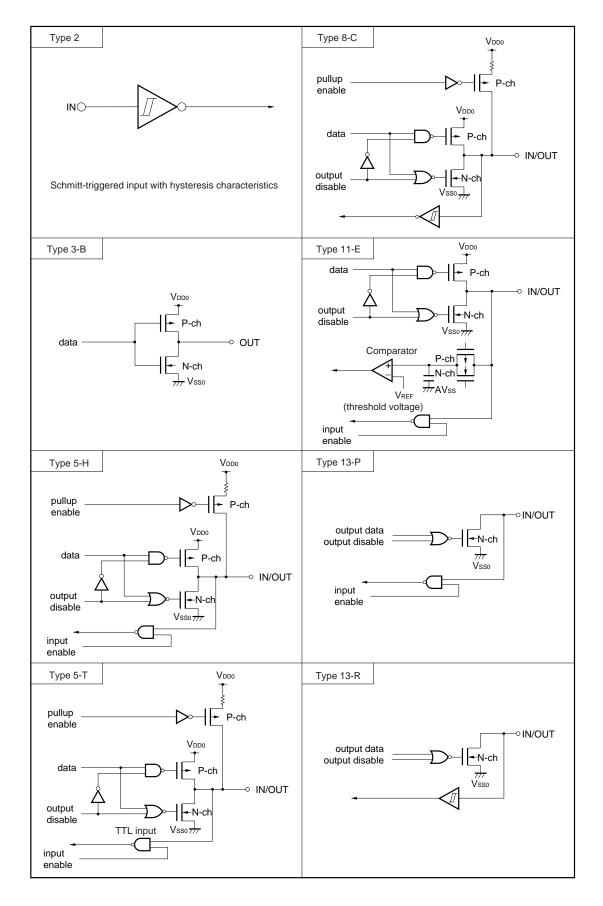
Notes 1. *μ*PD780701Y only

2. μPD780702Y only

2.2 Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
RESET	Input	System reset input	Input	_
CPUREG	_	Regulator for CPU power supply. Connect to V_{SS0} or V_{SS1} via a 0.1- μ F capacitor.	-	-
V _{DD0}	-	Positive power supply for ports	-	_
VDD1	_	Positive power supply (except ports and analog section)	-	-
Vss0	-	Ground potential for ports – –		_
Vss1	-	Ground potential (except ports and analog section)		-
IC	-	Internally connected. Connect directly to Vsso or Vss1.	_	_

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins


The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, refer to Figure 2-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P07/INTP7	8-C	Input/output	Independently connect to Vsso via a resistor.
P20/SI31			Independently connect to VDD0 or VSS0 via a resistor.
P21/SO31	5-H		
P22/SCK31	8-C		
P23/BUZ	5-H		
P24/RxD0	8-C		
P25/TxD0	5-H		
P26/ASCK0	8-C		
P27/PCL	5-H		
P30/SI30	8-C		
P31/SO30	5-H		
P32/SCK30	8-C		
P33	13-P		Connect to VDD0 via a resistor.
P34/TO00	5-H		Independently connect to VDD0 or VSS0 via a resistor.
P35/TI000	8-C		
P36/TI010			
P40 to P47	5-H		Independently connect to VDD0 via a resistor.
P50 to P57	5-T		Independently connect to VDD0 or VSS0 via a resistor.
P64 to P67	5-H		
P70/TI52/TO52			
P71/SDA0	13-R		Independently connect to VDD0 via a resistor.
P72/SCL0			
P73/TO01	5-H		Independently connect to VDD0 or VSS0 via a resistor.
P74/TI001	8-C		
P75/TI011			
P76/TI50/TO50			
P77/TI51/TO51			
P80/ANI0 to P87/ANI7	11-E		
P90/ANI8 to P97/ANI15			
CRXD ^{Note 1}	2	Input	Connect to VDD0 or Vss0 via a resistor.
CTXD ^{Note 1}	3-B	Output	Leave open.
IRX0 ^{Note 2}	2	Input	Connect to VDD0 or Vss0 via a resistor.
ITX0 ^{Note 2}	3-B	Output	Leave open.
RESET	2	Input	_
AVREF	_		Connect to VDD0.
AVss		-	Connect to Vsso.
IC			Connect directly to Vsso or Vss1.

Table 2-1. Types of Pin Input/Output Circuits

Notes 1. μ PD780701Y only

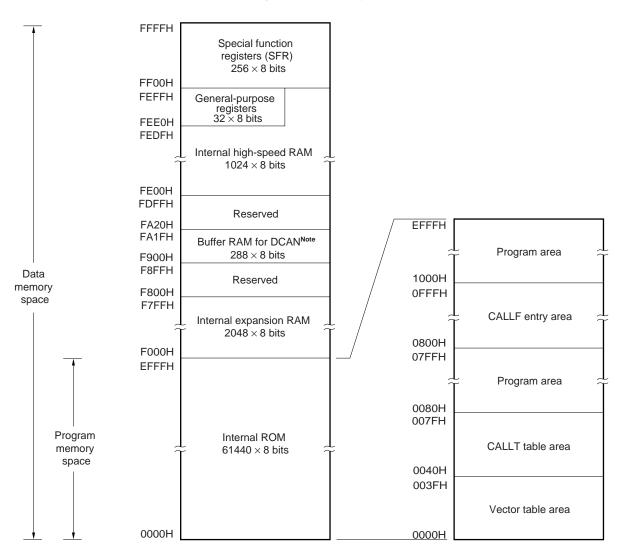

2. μPD780702Y only

Figure 2-1. Pin Input/Output Circuits

3. MEMORY SPACE

Figure 3-1 shows the memory map of the μ PD780701Y and 780702Y.

Note Buffer RAM for DCAN is incorporated only in the μ PD780701Y. It is reserved area in the μ PD780702Y.

4. PERIPHERAL HARDWARE FUNCTION FEATURES

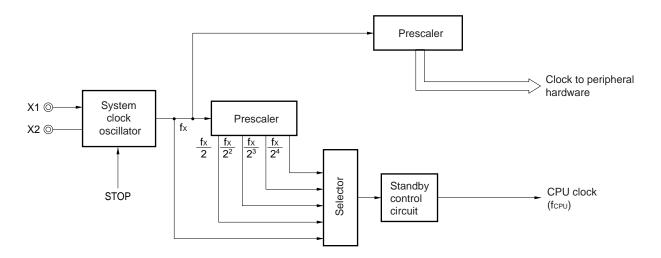
4.1 Ports

The following three types of I/O ports are available.

• CMOS input/output (Ports 0, 2 to 4, 7 to 9 (except P33, P71, P72)):	56
TTL input/CMOS output (Port 5):	8
N-ch open-drain input/output (P33, P71, P72):	3
Total:	67

Table 4-1. Port Functions

Port Name	Pin Name	Function	
Port 0	P00 to P07	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	
Port 2	P20 to P27	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	
Port 3	P30 to P32, P34 to P36	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	
	P33	N-ch open-drain input/output port. Input/output can be specified in 1-bit units. LEDs can be driven directly.	
Port 4	P40 to P47	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software. Interrupt request flag KRIF is set to 1 by falling edge detection.	
Port 5	P50 to P57	TTL input/CMOS output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	
Port 6	P64 to P67	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	
Port 7	P70, P73 to P77	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	
	P71, P72	N-ch open-drain input/output port. Input/output can be specified in 1-bit units.	
Port 8	P80 to P87	Input/output port. Input/output can be specified in 1-bit units.	
Port 9	P90 to P97	Input/output port. Input/output can be specified in 1-bit units.	


4.2 Clock Generator

A system clock generator is incorporated.

The minimum instruction execution time can be changed.

• 0.32 μs/0.64 μs/1.27 μs/2.54 μs/5.09 μs (@ 6.29-MHz operation with system clock)

NEC

4.3 Timer/Counter

Seven timer/counter channels are incorporated.

- 16-bit timer/event counter: 2 channels
- 8-bit timer/event counter: 3 channels
- Watch timer: 1 channel
- Watchdog timer: 1 channel

Table 4-2. Operations of Timer/Event Counters

		16-bit timer/event counters TM00, TM01	8-bit timer/event counters TM50, TM51, TM52	Watch timer	Watchdog timer
Operation mode	Interval timer	2 channels	3 channels	1 channel ^{Note 1}	1 channel ^{Note 2}
	External event counter	2 channels	3 channels	_	_
Function	Timer output	2 outputs	3 outputs	-	-
	PWM output	-	3 outputs	_	-
	PPG output	2 outputs	-	-	-
	Pulse width measurement	4 inputs	-	-	-
	Square wave output	2 outputs	3 outputs	-	-
	One-shot pulse output	2 outputs	-	_	_
	Interrupt source	4	3	2	1

Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer has the watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.

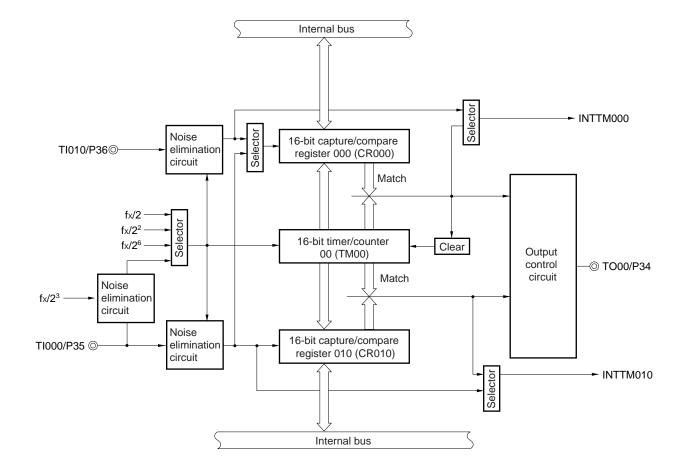


Figure 4-2. Block Diagram of 16-Bit Timer/Event Counter TM00

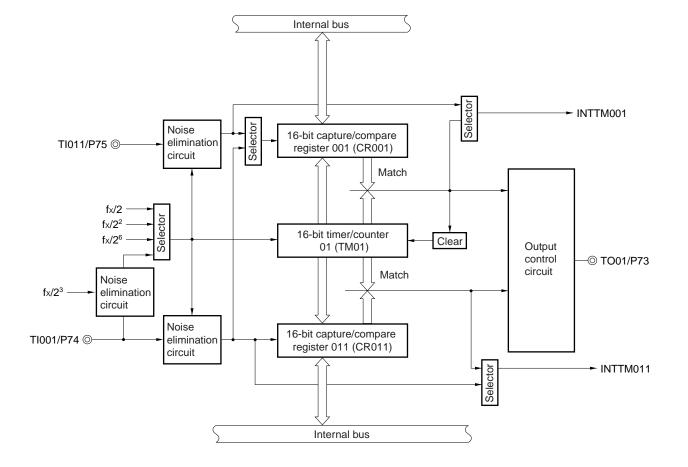


Figure 4-3. Block Diagram of 16-Bit Timer/Event Counter TM01

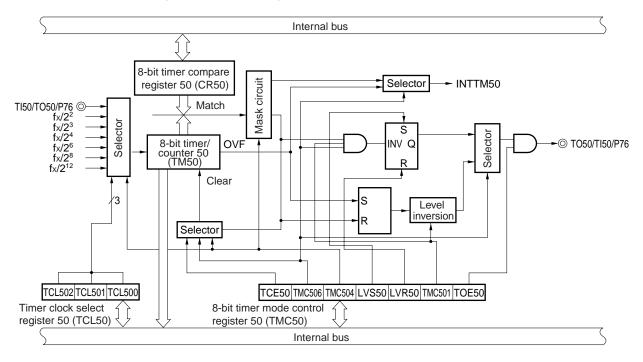
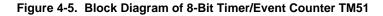
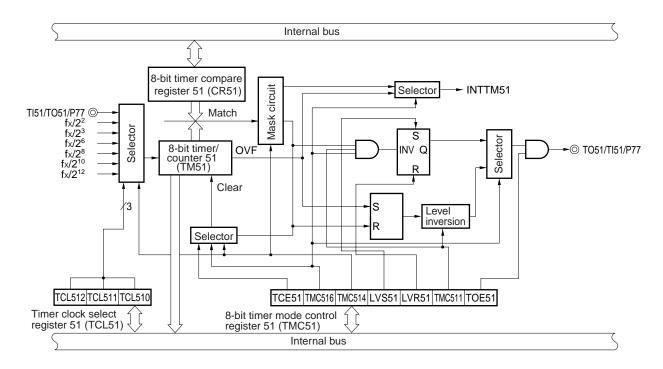




Figure 4-4. Block Diagram of 8-Bit Timer/Event Counter TM50

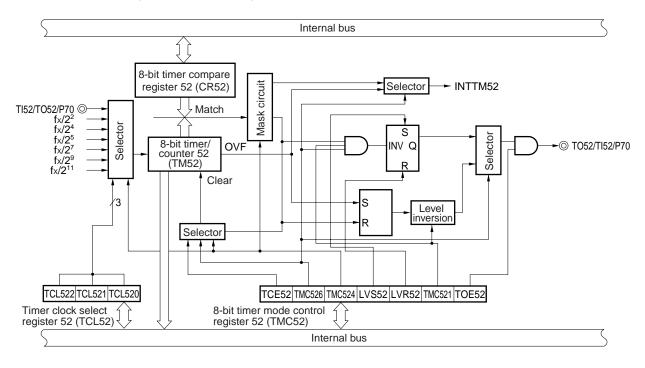
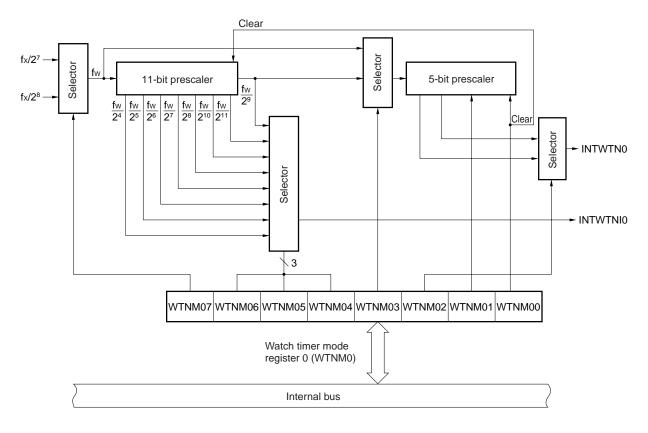
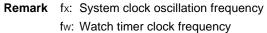




Figure 4-6. Block Diagram of 8-Bit Timer/Event Counter TM52

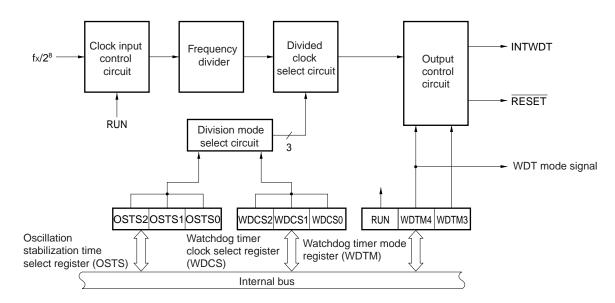
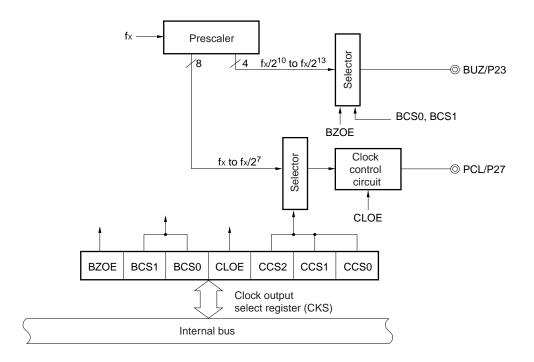


Figure 4-8. Watchdog Timer Block Diagram

4.4 Clock Output/Buzzer Output Control Circuit


A clock output/buzzer output control circuit (CKU) is incorporated. Clocks with the following frequencies can be output as clock output.

 49.2 kHz/98.3 kHz/197 kHz/393 kHz/786 kHz/1.57 MHz/3.15 MHz/6.29 MHz (@ 6.29-MHz operation with system clock)

Clocks with the following frequencies can be output as buzzer output.

• 768 Hz/1.54 kHz/3.07 kHz/6.14 kHz (@ 6.29-MHz operation with system clock)

Figure 4-9. Block Diagram of Clock Output/Buzzer Output Control Circuit CKU

4.5 A/D Converter

An A/D converter consisting of sixteen 8-bit resolution channels is incorporated.

The A/D converter has the following two functions.

- 8-bit resolution A/D conversion
- Power fail detection function

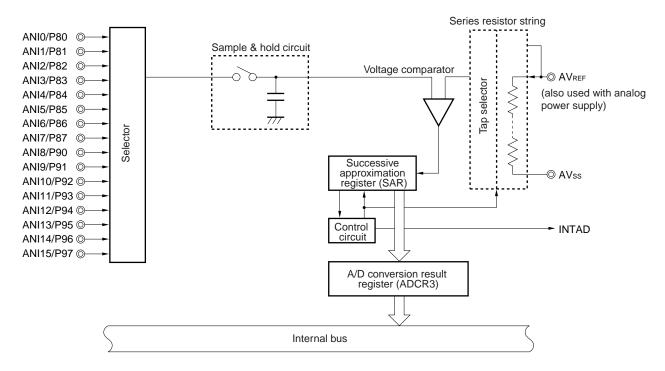
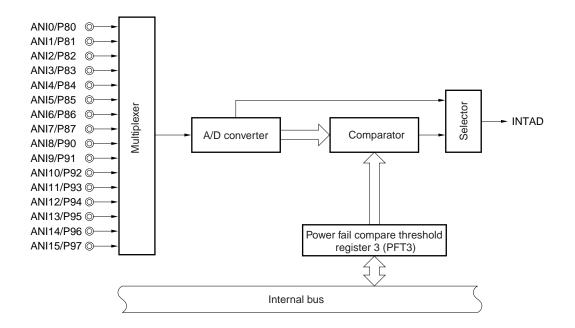



Figure 4-11. Block Diagram of Power Fail Detection Function

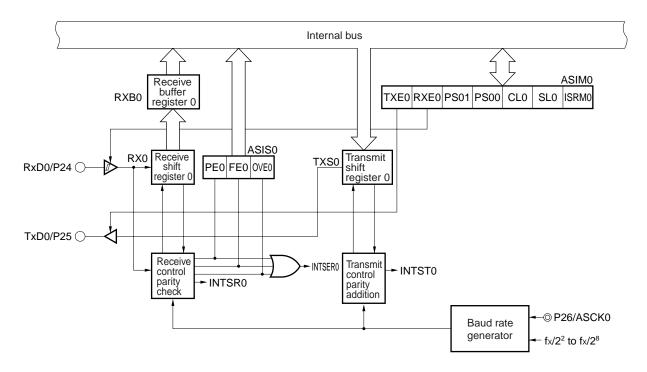
4.6 Serial Interfaces

Four serial interface channels are incorporated.

- Serial interface UART0
- Serial interfaces SIO30, SIO31
- Serial interface IIC0

(1) Serial interface UART0

The serial interface UART0 has the asynchronous serial interface (UART) mode.


• Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data is transmitted and received after the start bit.

The on-chip dedicated UART baud rate generator enables communication using a wide range of selectable baud rates.

In addition, a baud rate can also be defined by dividing the clock input to the ASCK0 pin.

The dedicated UART baud rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

Figure 4-12. Block Diagram of Serial Interface UART0

(2) Serial interfaces SIO30, SIO31

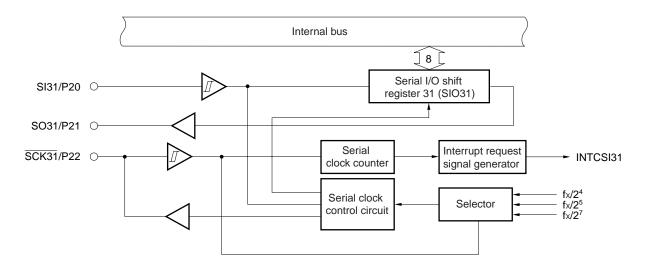
The serial interfaces SIO30 and SIO31 have the 3-wire serial I/O mode.

• 3-wire serial I/O mode (fixed as MSB first)

This is an 8-bit data transfer mode using three lines: serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

Since simultaneous transmit and receive operations are available in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.


The 3-wire serial I/O mode is useful for connection to a peripheral I/O device that includes a clocked serial interface, a display controller, etc.

Remark n = 0, 1

Figure 4-13. Block Diagram of Serial Interface SIO30

Figure 4-14. Block Diagram of Serial Interface SIO31

(3) Serial interface IIC0

The serial interface IIC0 has the I^2C (Inter IC) bus mode (multimaster supported).

• I²C bus mode (multimaster supported)

This is an 8-bit data transfer mode between multiple devices using two lines: serial clock line (SCL0) and serial data bus line (SDA0).

This mode complies with the l²C bus format, and can output "start condition", "data", and "stop condition" during transmission via the serial data bus. These data are automatically detected by hardware during reception.

Since the SCL0 and SDA0 are open-drain outputs in IIC0, pull-up resistors for the serial clock line and the serial data bus line are required.

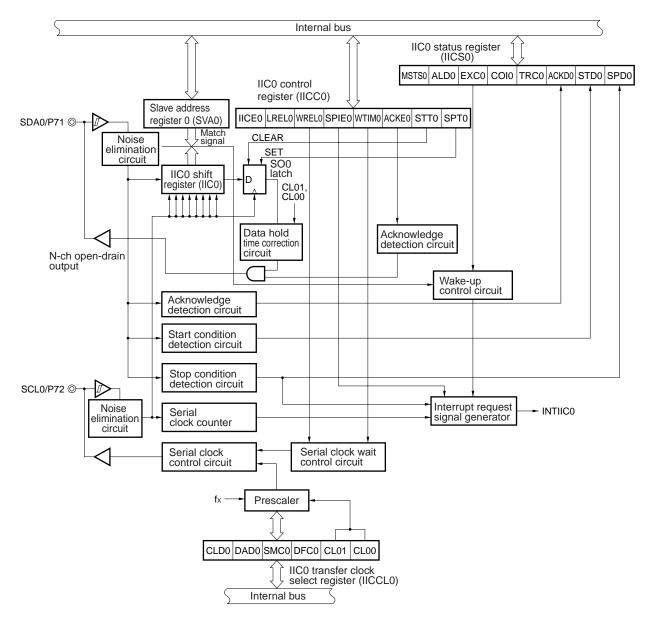


Figure 4-15. Block Diagram of Serial Interface IIC0

4.7 DCAN Controller (μPD780701Y only)

The μ PD780701Y incorporates a DCAN (Direct storage Control Area Network) controller.

Function	Details	
Protocol	CAN2.0-supported extended frame format (Bosch specification 2.0 part B)	
Baud rate	Maximum of 390 kbps (@ 6.29 MHz)	
Bus line control	CMOS I/O for external transceiver	
Clock	Selectable by register	
Data storage	Capacity of buffer RAM for DCAN: 288 bytes	
	(if not using for DCAN, it can be used for normal RAM)	
Message configuration	Messages received via a message identifier are stored in RAM.	
	Transmit message buffers: 2	
Message number	Maximum of 16 receive messages, including 2 masks	
	Transmit channels: 2 channels	
Message sorting	Can set a separate identifier for the 16 receive messages	
	Mask identifiers: 2	
	Can set a global mask for all messages	
Interrupts	Transmit interrupt request: 1	
	Receive interrupt request: 1	
	Error interrupt request: 1	
Time function	A time stamp function is available	
Other functions	A separate transmit/receive error counter is available	
	A flag for checking the bus connection is available	
	A dedicated receive mode is available (use when detecting the baud rate on the bus)	
Low power consumption mode	Sleep mode (can be woken up by the DCAN bus)	
	Stop mode (cannot be woken up by the DCAN bus)	

Table 4-3. DCAN Controller Functional Outline

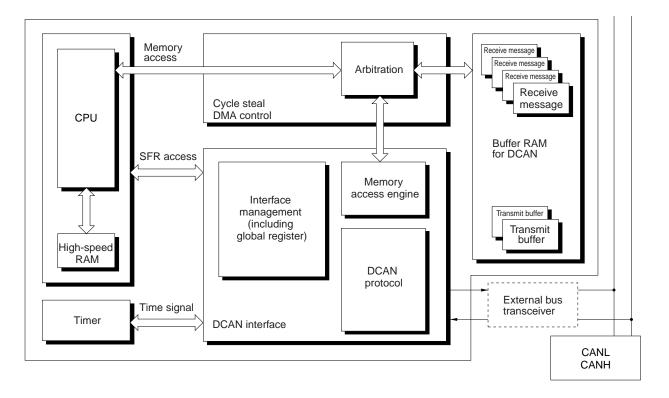


Figure 4-16. DCAN Controller Block Diagram (µPD780701Y only)

The DCAN interface section processes all protocol operations by means of the DCAN protocol section hardware.

The memory access engine either fetches the DCAN protocol data transmitted from a specific RAM area and transfers it to the DCAN protocol section, or compares and sorts the fetched data and then stores it in a predefined RAM area.

The DCAN allows direct interfacing between the DCAN and the accessible CPU area, as well as between the CPU and that area without any effect on the CPU. The DCAN section operates with the external bus transceiver that converts transmit data line and receive data line to the electrical characteristics of DCAN bus.

4.8 IEBus Controller (μPD780702Y only)

The μ PD780702Y incorporates an IEBus controller. The functions of the IEBus interface are limited compared with those of previous models (i.e., those incorporated in the μ PD78098B Subseries).

Table 4-4 shows a comparison of the interfaces in the μ PD78098B Subseries and the μ PD780702Y.

Item	IEBus Incorporated in μ PD78098B Subseries	IEBus Incorporated in μ PD780702Y
Communication mode	Mode 0, mode 1, mode 2	Fixed at mode 1
Internal system clock	fx = 6.0 (6.29) MHz	fx = 6.291456 MHz ^{Note}
Internal buffer size	Transmit buffers: 33 bytes (FIFO)	Transmit buffers: 1 byte
	Receive buffers: 40 bytes (FIFO)	Receive buffers: 1 byte
	Up to 4 frames receivable	
CPU processing	Processing before start of communication (data setting)	Processing before start of communication (data setting)
	Setting, controlling each communication status Writing data to transmit buffers	Setting, controlling each communication status
	Reading data from receive buffers	Data write processing in one-byte units
		Data read processing in one-byte units
		Transmission control of slave status, etc.
		Multiple-frame control, repeat master-
		request processing
Hard processing	Bit processing (modem, error detection)	Bit processing (modem, error detection)
	Field processing (generation/control)	Field processing (generation/control)
	Arbitration result detection	Arbitration result detection
	Parity processing (generation/error detection)	Parity processing (generation/error
	ACK/NACK automatic response	detection)
	Automatic retransmit-of-data processing	ACK/NACK automatic response
	Automatic remaster processing	Automatic retransmit-of-data processing
	Automatic transmission processing of slave	
	status, etc.	
	Multiple-frame reception processing	

Table 4-4. IEBus Interface Comparison (µPD78098B Subseries and µPD780702Y)

Note The μ PD780702Y only supports an IEBus controller that operates at fx = 6.291456 MHz.

Remark fx: System clock frequency

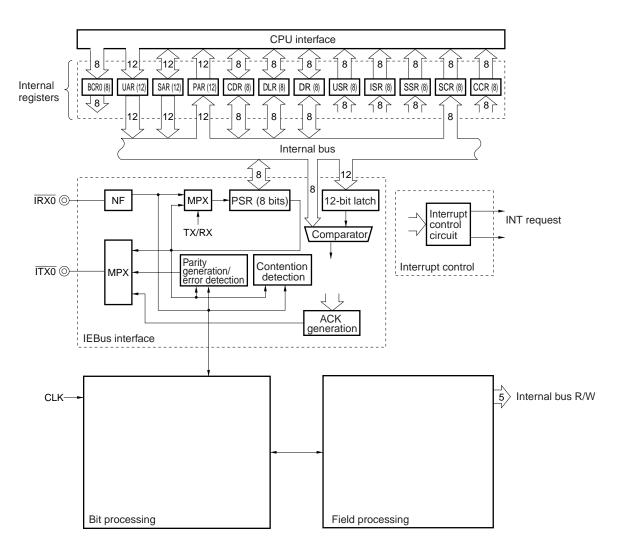


Figure 4-17. IEBus Controller Block Diagram (µPD780702Y only)

NEC

NEC

The IEBus is broadly configured from the following 6 blocks.

- CPU interface
- Interrupt control
- Internal registers
- Bit processing
- Field processing
- IEBus interface

<CPU interface>

This is a control block whose purpose is to interface between the CPU (78K/0) and the IEBus main unit.

<Interrupt control>

This is a control block whose purpose is to pass on interrupt request signals from the IEBus main unit to the CPU.

<Internal registers>

This block sets the control registers that control the IEBus and the data of each field.

<Bit processing>

This block performs the bit timing generation and resolution, and is mainly configured from bit sequence ROM, an 8-bit preset timer, and a determiner.

<Field processing>

This block generates each field in the communication frame, and is mainly configured from field sequence ROM, a 4-bit down counter, and a determiner.

<IEBus interface>

This is the external driver/receiver interface block, and is mainly configured from a noise filter, a shift register, a contention detector, a parity detector, a parity generation circuit, and an ACK/NACK generation circuit.

5. INTERRUPT FUNCTIONS

A total of 30 interrupt sources are provided in the μ PD780701Y, and a total of 29 interrupt sources are provided in the μ PD780702Y, divided into the following three types.

- Non-maskable: 1
- Maskable: 28 (μPD780701Y)

1

- 27 (µPD780702Y)
- Software:

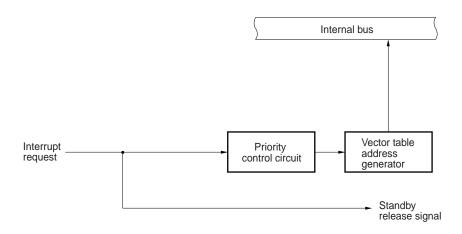
Table 5-1.	Interrupt	Source	List	(1/2)	

	Default		Interrupt Source	Internal/	Vector	Basic
Interrupt Type	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Non-maskable	-	INTWDT	Watchdog timer overflow (with non- maskable interrupt selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTP7			0014H	
	9	INTSER0	Occurrence of UART0 reception error	Internal	0016H	(B)
	10	INTSR0	End of UART0 reception		0018H	
	11	INTST0	End of UART0 transmission		001AH	
	12	INTCSI30	End of SIO30 transfer		001CH	
	13	INTCSI31	End of SIO31 transfer		001EH	
	14	INTIIC0	End of IIC0 transfer		0020H	
	15	INTCE ^{Note 3}	DCAN error		0022H	
	16	INTCR ^{Note 3} / INTIE1 ^{Note 4}	DCAN reception/ IEBus data access request		0024H	
	17	INTCT ^{Note 3} / INTIE2 ^{Note 4}	DCAN transmission buffer/ IEBus communication error and start/end of communication		0026H	
	18	INTWTNI0	Reference time interval signal from watch timer		0028H	
	19	INTTM000	Generation of matching signal of TM00 and CR000 (with compare register specified) TI000 valid edge detection (with capture register specified)		002AH	

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 28 is the lowest order.

- 2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 5-1.
- **3.** *μ*PD780701Y only
- **4.** μPD780702Y only

	Default		Interrupt Source	Internal/	Vector	Basic
Interrupt Type	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{№™ 2}
Maskable	20	INTTM010	Generation of matching signal of TM00 and CR010 (with compare register specified) TI010 valid edge detection (with capture register specified)	Internal	002CH	(B)
	21	INTTM001	Generation of matching signal of TM01 and CR001 (with compare register specified) TI001 valid edge detection (with capture register specified)		002EH	
	22	INTTM011	Generation of matching signal of TM01 and CR011 (with compare register specified) TI011 valid edge detection (with capture register specified)		0030H	
	23	INTTM50	Generation of matching signal of TM50 and CR50		0032H	
	24	INTTM51	Generation of matching signal of TM51 and CR51		0034H	
	25	INTTM52	Generation of matching signal of TM52 and CR52		0036H	
	26	INTAD	End of conversion by A/D converter		0038H	
	27	INTWTN0	Watch timer overflow		003AH	
	28	INTKR	Port 4 falling edge detection	External	003CH	(D)
Software	-	BRK	Execution of BRK instruction	-	003EH	(E)


Table 5-1. Interrupt Source List (2/2)

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 28 is the lowest order.

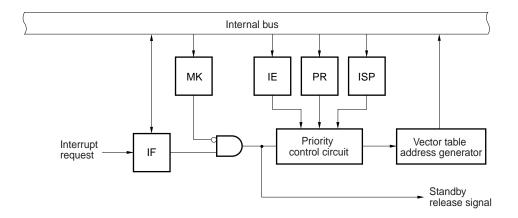
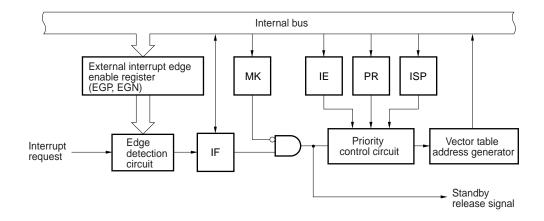
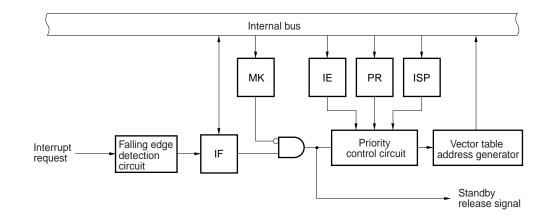

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 5-1.

Figure 5-1. Basic Configuration of Interrupt Function (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



(C) External maskable interrupt (INTP0 to INTP7)

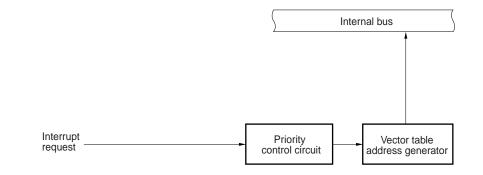
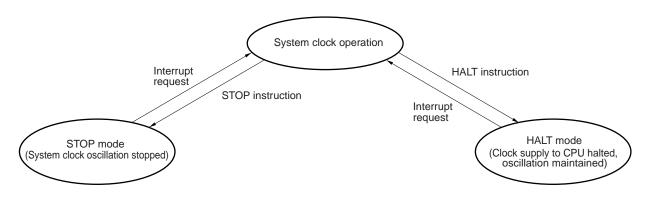


Figure 5-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTKR)

(E) Software interrupt


- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag

6. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small current consumption.

Figure 6-1. Standby Function

7. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by watchdog timer runaway time detection

8. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd operand										[HL+byte]			
1st operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+B] [HL+C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP									001/7		INC DEC
B, C											DBNZ		
sfr saddr	MOV MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16	MOV	MOV											DUOU
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL+byte] [HL+B] [HL+C]		MOV											
х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd operand 1st operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd operand 1st operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	вт	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	вт	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	вт	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	вт	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd operand 1st operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR, DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions			Ratings	Unit
Power supply voltage	Vdd	Vdd = AVref			-0.3 to +6.5	V
	AVREF					
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P40 to P47, P50 to P57, P				V
	VI2	P33	N-ch open dra	in	-0.3 to +16	V
Output voltage	Vo	P00 to P07, P20 to P27, P30 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CTXD, ITX0			–0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P80 to P87, P90 to P97	Analog input	oin	AVss - 0.3 to AVREF + 0.3	V
				and -0.3 to V _{DD} + 0.3		
Output current, high	Іон	Per pin for P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70, P73 to P77, P80 to P87, P90 to P97, CRXD, IRX0			-10	mA
		Total for all pins			-30	mA
Output current, low		Per pin for P00 to P07, P2 to P32, P34 to P36, P40 to		Peak value	20	mA
		P57, P64 to P67, P70 to P P87, P90 to P97, CTXD, Ī		rms value	10	mA
		P33		Peak value	30	mA
				rms value	15	mA
		Total for all pins		Peak value	100	mA
				rms value	60	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	IC X2 X1	Oscillation frequency (fx) ^{Note 1}			6.29 ^{Note 2}		MHz
		Oscillation stabilization time ^{Note 3}				30	ms

Notes 1. Indicates only oscillator characteristics.

- **2.** 6.29 = 6.291456 (MHz)
- 3. Time required to stabilize oscillation after reset or STOP mode release.

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol		Conditi	ons	MIN.	TYP.	MAX.	Unit
Input voltage,	VIH1	P21, P23, P25, P P73, P80 to P87,		, P40 to P47, P64 to P67,	0.7Vdd		Vdd	V
high	VIH2		P00 to P07, P20, P22, P24, P26, P30, P32, P35, P36, P70 to P72, P74 to P77, CRXD, IRX0, RESET				Vdd	V
	VIH3	P50 to P57			2.3		Vdd	V
	VIH4	P33		N-ch open drain	0.7Vdd		15	V
	VIH5	X1, X2			Vdd - 0.5		Vdd	V
Input voltage, low	VIL1	P21, P23, P25, P P73, P80 to P87,		, P40 to P47, P64 to P67,	0		0.3Vdd	V
	VIL2	P00 to P07, P20, P70 to P72, P74		0		0.2Vdd	V	
	VIL3	P50 to P57			0		0.75	V
F	VIL4	P33		N-ch open drain	0		0.3Vdd	V
	VIL5	X1, X2			0		0.4	V
Output voltage,	Vон1	Іон = -1 mA		07, P20 to P27, P30 to to P36, P40 to P47, P50	Vdd - 1.0		Vdd	V
high	Voh2	Іон = −100 μА	to P57, P64 to P67, P70, P73 to P77, P80 to P87, P90 to P97, CTXD, ITX0		Vdd — 0.5		Vdd	V
Output	Vol1	lo∟ = 15 mA	P33			0.4	2.0	V
voltage, low	Vol2	lo∟ = 1.6 mA	P71, P72				0.4	V
	Vol3	lo∟ = 1 mA		07, P20 to P27, P30 to to P36, P40 to P47, P50			1.0	V
	Vol4	Ιοι = 100 μΑ	-	64 to P67, P70, P73 to to P87, P90 to P97, X0			0.5	V
Input leakage current, high	Ішні	Vin = Vdd	P32, P34 to P57, P	07, P20 to P27, P30 to to P36, P40 to P47, P50 64 to P67, P70 to P77, 87, P90 to P97, CRXD, SET			3	μA
	LIH2		X1, X2				20	μA
	Ілнз	Vin = 15 V	P33				80	μA
Input leakage current, low	ILIL1	V _{IN} = 0 V	P32, P34 to P57, P	07, P20 to P27, P30 to to P36, P40 to P47, P50 64 to P67, P80 to P87, 07, CRXD, IRX0, RESET			-3	μA
Γ	ILIL2		X1, X2				-20	μA
	Ililis		P33 (exc instructio	ept executing input n ^{Note})			-3	μA

Note During input instruction execution, a low-level input leakage current of $-200 \ \mu$ A (MAX.) flows only for 1 clock (without wait).

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V)

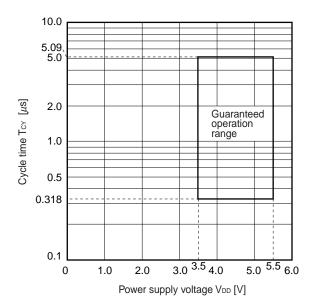
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output leakage current, high	Ігон	Vout = Vdd	P00 to P07, P20 to P27, P30 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CTXD, ITX0			3	μΑ
Output leakage current, low	Ilol	Vout = 0 V	P00 to P07, P20 to P27, P30 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, CTXD, ITX0			-3	μA
Software pull-up resistor	R1	VIN = 0 V	P00 to P07, P20 to P27, P30 to P32, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70, P73 to P77	15	30	90	kΩ
Power supply	IDD1	6.29-MHz crysta	I oscillation operating mode		4.0	20	mA
current ^{Note 1}	IDD2	6.29-MHz crysta	I oscillation HALT mode ^{Note 2}		500	1000	μΑ
	IDD3	STOP mode			0.1	30	μΑ

Notes 1. Refers to the current flowing to the V_{DD1} pin. The current flowing to the A/D converter and on-chip pull-up resistor is not included.

2. Low-speed mode operation (when processor clock control register (PCC) is set to 04H). The current for peripheral circuit operation is not included.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics


(1) Basic operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Тсү	Operating with system clock (fx = 6.291456 MHz)	0.318		5.09	μs
TI000, TI010, TI001, TI011 input high-/low- level width	tтіно tтіlo		4/f _{sam} + 0.25 ^{Note}			μs
TI50, TI51, TI52 input frequency	ft15				2	MHz
TI50, TI51, TI52 input high-/low-level width	t⊤iн₅ t⊤i∟s		200			ns
Interrupt request input high-/low-level width	tinth tintl	INTP0 to INTP7, P40 to P47	10			μs
RESET low-level width	trsl		10			μs

Note Selection of $f_{sam} = f_x/2$, $f_x/4$, $f_x/64$ is possible with bits 0 and 1 (PRM0n0, PRM0n1) of prescaler mode register 0n (PRM0n). However, if the TI00n valid edge is selected as the count clock, the value becomes $f_{sam} = f_x/8$ (n

= 0, 1).

TCY VS VDD (At system clock operation)

(2) Serial interface ($T_A = -40$ to +85°C, $V_{DD} = 3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	tkCY1		1.9			μs
SCK30 high-/low-level width	tкнı tкLı		tксү1/ 2 – 50			ns
SI30 setup time (to SCK30↑)	tsiki		100			ns
SI30 hold time (from SCK30 [↑])	tksi1		400			ns
SO30 output delay time from $\overline{\text{SCK30}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

(a) 3-wire serial I/O mode (SCK30 ... Internal clock output)

Note C is the load capacitance of the $\overline{SCK30}$ and SO30 output lines.

(b) 3-wire serial I/O mode (SCK30 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	tkCY2		800			ns
SCK30 high-/low-level width	tкн₂ tк∟2		400			ns
SI30 setup time (to SCK30↑)	tsık2		100			ns
SI30 hold time (from SCK30↑)	tksi2		400			ns
SO30 output delay time from $\overline{\text{SCK30}}\downarrow$	tĸso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO30 output line.

(c) 3-wire serial I/O mode (SCK31 ... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK31 cycle time	tксүз		1.9			μs
SCK31 high-/low-level	tкнз		tксү1/			ns
width	tĸL3		2 – 50			
SI31 setup time (to SCK31↑)	tsıкз		100			ns
SI31 hold time (from SCK31↑)	tĸsıз		400			ns
SO31 output delay time from $\overline{\text{SCK31}}\downarrow$	tкsoз	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK31}$ and SO31 output lines.

(d) 3-wire serial I/O mode (SCK31 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK31 cycle time	tkCY4		800			ns
SCK31 high-/low-level	tкн4		400			ns
width	tĸL4					
$\frac{SI31 \text{ setup time (to}}{SCK31}\uparrow)$	tsiκ₄		100			ns
SI31 hold time (from SCK31↑)	tksi4		400			ns
SO31 output delay time from $\overline{\text{SCK31}}\downarrow$	tkso4	$C = 100 \text{ pF}^{\text{Note}}$			300	ns

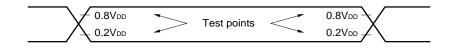
Note C is the load capacitance of the SO31 output line.

(e) UART mode (Dedicated baud rate generator output)

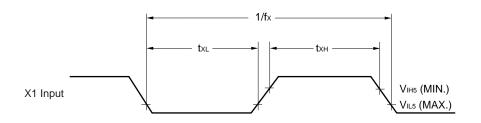
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					38836	bps

(f) UART mode (External clock input)

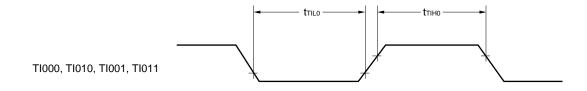
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз		800			ns
ASCK0 high-/low-level width	tкнз, tк∟з		400			ns
Transfer rate					39063	bps

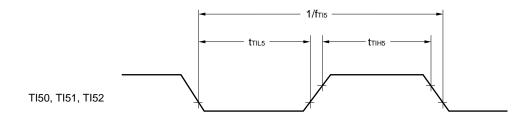

(g) I²C bus mode

	Parameter	Symbol	Standa	rd Mode	High-spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock freq	uency	fsc∟	0	100	0	400	kHz
Bus free time (b	etween stop and start conditions)	t BUF	4.7	-	1.3	-	μs
Hold time ^{Note 1}		thd:sta	4.0	-	0.6	_	μs
SCL0 clock low-	level width	tLOW	4.7	-	1.3	-	μs
SCL0 clock high-level width		tніgн	4.0	_	0.6	_	μs
Start/restart condition setup time		tsu:sta	4.7	-	0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	5.0	-	-	_	μs
	l²C bus		0 ^{Note 2}	-	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		tsu:dat	250	-	100 ^{Note 4}	_	ns
SDA0 and SCL0) signal rise time	tr	-	1000	-	300	ns
SDA0 and SCL0 signal fall time		t⊧	_	300	_	300	ns
Stop condition setup time		tsu:sто	4.0	-	0.6	_	μs
Spike pulse width controlled by input filter		tsp	_	_	0	50	ns
Capacitive load	of each bus line	Cb	_	400	_	400	pF

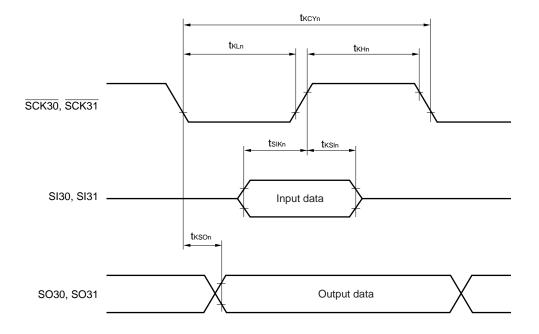

Notes 1. On start condition, the first clock pulse is generated after this period.

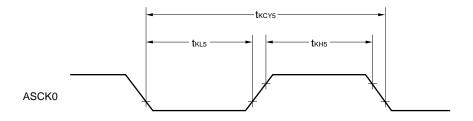
- 2. To fulfill undefined area of the SCL0 falling edge, it is necessary for the device to provide internally SDA0 signal (on VIHmin. of SCL0 signal) with at least 300 ns of hold time.
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time tHD:DAT needs to be fulfilled.
- **4.** The high-speed mode l²C bus is available in the standard mode l²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time tsu:DAT $\geq 250~\text{ns}$
 - If the device extends the SCL0 signal low state hold time Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released ($t_{Rmax.} + t_{SU:DAT} = 1000 + 250 = 1250$ ns by standard mode I²C bus specification).


AC Timing Test Points (excluding X1 input)

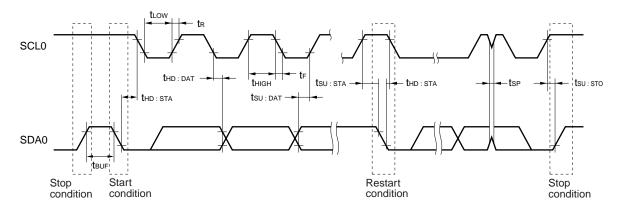


Clock Timing


TI Timing


Serial Transfer Timing

3-wire serial I/O mode:



n = 1 to 4

UART mode (external clock input):

I²C bus mode:

IEBus0 Controller Characteristics (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IEBus system clock frequency	fs	Fixed at mode 1		6.29		MHz
Driver delay time (Bus line from ITX0 output)	t dtx	C = 50 pF ^{Note} The μ PC2590 is used as a driver/receiver			1.5	μs
Receiver delay time (IRX0 input from bus line)	t drx	The μ PC2590 is used as a driver/receiver			0.7	μs
Propagation delay time on bus	t DBUS	The μ PC2590 is used as a driver/receiver			0.85	μs

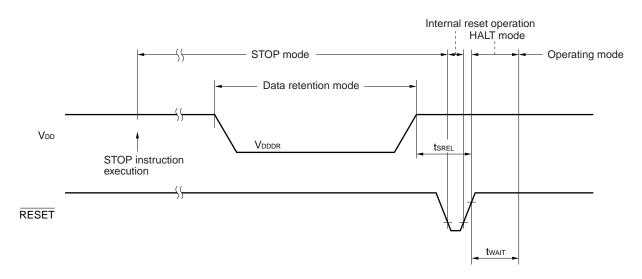
Note C is the load capacitance of the $\overline{\text{ITX0}}$ output line.

Remarks 1. Although the standard system clock frequency for the IEBus is 6.0 MHz, the μ PD780702Y guarantees normal operation of the IEBus controller at 6.29 MHz.

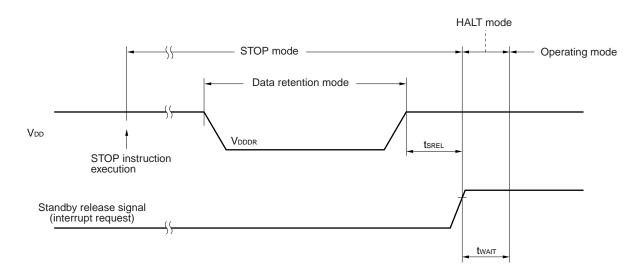
2. fs: IEBus controller system clock frequency

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVREF = 3.5 to 5.5 V, Vss = AVss = 0 V)

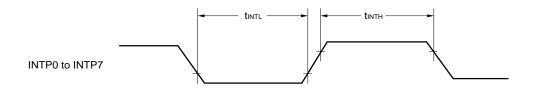
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}					±0.6	%
Conversion time	t CONV		14		100	μs
Analog input voltage	VIAN		AVss		AVREF	V
AVREF resistance	RAIREF		T.B.D	28	T.B.D	kΩ

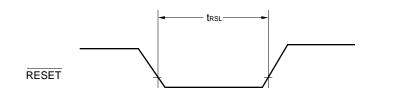

Note Excludes quantization error ($\pm 0.2\%$). It is indicated as a ratio to the full-scale value.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		2.0		5.5	V
Data retention power supply current	Idddr	VDDDR = 2.0 V		0.1	10	μA
Release signal set time	t SREL		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request		Note		ms

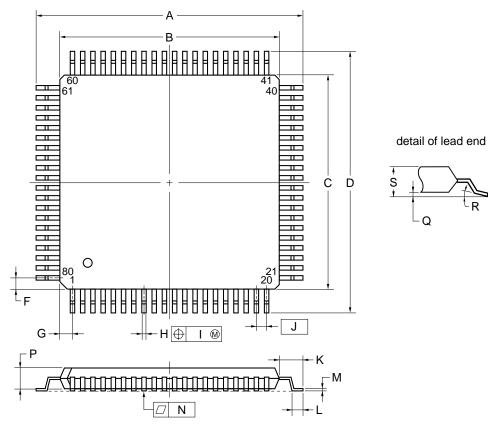

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Note Selection of 2¹²/fx, 2¹⁴/fx, 2¹⁹/fx, and 2²¹/fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).


Data Retention Timing (STOP mode release by RESET)


Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

Interrupt Request Input Timing



RESET Input Timing

10. PACKAGE DRAWING

80 PIN PLASTIC QFP (14×14)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.20±0.20	0.677±0.008
В	14.00±0.20	0.551 +0.009 -0.008
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
Н	0.32±0.06	$0.013^{+0.002}_{-0.003}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.60±0.20	0.063±0.008
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$
М	$0.17 \substack{+0.03 \\ -0.07}$	$0.007^{+0.001}_{-0.003}$
N	0.10	0.004
Р	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	1.70 MAX.	0.067 MAX.
		P80GC-65-8BT

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780701Y Subseries. Also refer to (5) Cautions on Using Development Tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series
CC78K/0	C compiler package common to 78K/0 Series
DF780701 ^{Note}	Device file for μ PD780701Y Subseries
CC78K/0-L	C compiler library source file common to 78K/0 Series

Note Under development

(2) Flash Memory Writing Tools

Flashpro II (Part No. FL-	Dedicated flash programmer for microcomputers incorporating flash memory
PR2), Flashpro III (Part	
No. FL-PR3, PG-FP3)	
FA-80GC	Adapter for writing to flash memory for use in an 80-pin plastic QFP (GC-8BT type).
	An adjusting connection to the target product is necessary.
Flashpro II controller,	Program that is controlled from a PC and comes together with Flashpro II and Flashpro III. It operates
Flashpro III controller	in environments such as Windows [™] 95.

(3) Debugging Tools

• When IE-78K0-NS in-circuit emulator is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C	Interface adapter necessary when using PC-9800 series PC (except notebook type) as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable necessary when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter necessary when using IBM PC/AT [™] compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Adapter necessary when using personal computer incorporating PCI bus as host machine
IE-780701-NS-EM1 ^{Note}	Emulation board to emulate μ PD780701Y Subseries
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Conversion socket to connect the NP-80GC and a target system board on which an 80-pin plastic QFP (GC-8BT type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780701 ^{Note}	Device file for μ PD780701Y Subseries

Note Under development

• When IE-78001-R-A in-circuit emulator is used

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Interface adapter necessary when using PC-9800 series PC (except notebook type) as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter necessary when using IBM PC/AT compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Adapter necessary when using personal computer incorporating PCI bus as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when using EWS as host machine
IE-780701-NS-EM1 ^{Note}	Emulation board to emulate μ PD780701Y Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-780701-NS-EM1 on IE-78001-R-A
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Conversion socket to connect the EP-78230GC-R and a target system board on which an 80-pin plastic QFP (GC-8BT type) can be mounted
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780701 ^{Note}	Device file for μ PD780701Y Subseries

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780701.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and DF780701.
- The FL-PR2, FL-PR3, FA-80GC, and NP-80GC are products made by Naitou Densei Machidaseisakusho Co., Ltd. (TEL +81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.
- For third party development tools, see the **78K/0 Series Selection Guide (U11126E)**.
- The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows [™]]	HP9000 series 700 [™] [HP-UX [™]]
	IBM PC/AT and compatibles	SPARCstation [™] [SunOS [™] , Solaris [™]]
Software	[Japanese/English Windows]	NEWS [™] (RISC) [NEWS-OS [™]]
RA78K/0	√ ^{Note}	\checkmark
CC78K/0	√ ^{Note}	\checkmark
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	_
RX78K/0	√ ^{(Note}	\checkmark
MX78K0	√ ^{(Note}	\checkmark

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

• Documents Related to Devices

Document Name	Document No.	
	English	Japanese
μPD780701Y Subseries User's Manual	Under preparation	U13781J
μ PD780701Y, 780702Y Preliminary Product Information	This document	U13920J
μPD78F0701Y Preliminary Product Information	U13563E	U13563J
78K/0 Series User's Manual Instructions	U12326E	U12326J

• Documents Related to Development Tools (User's Manuals)

Document Name		Document No.	
		English	Japanese
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-How	U13034E	U13034J
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-78K0-R-EX1		To be prepared	To be prepared
IE-780701-NS-EM1		To be prepared	To be prepared
EP-780230		EEU-1515	EEU-985
SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger Windows Based	Reference	U12900E	U12900J
ID78K0 Integrated Debugger EWS Based	Reference	_	U11151J
ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J
ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J

• Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		English	Japanese
78K/0 Series Real-Time OS	Fundamental	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	U12257E	U12257J

• Other Related Documents

Document Name	Document No.	
	English	Japanese
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Microcomputer-Related Products by Third Party	_	U11416J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I^2C components conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

FIP, IEBus, and Inter Equipment Bus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02

Fax: 0211-65 03 02

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy

Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 **NEC Electronics Hong Kong Ltd.** Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A. Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.